Conjugating plasmids are preferred targets for Tn7.

نویسندگان

  • C A Wolkow
  • R T DeBoy
  • N L Craig
چکیده

Most transposons display target site selectivity, inserting preferentially into sites that contain particular features. The bacterial transposon Tn7 possesses the unusual ability to recognize two different classes of target sites. Tn7 inserts into these classes of target sites through two transposition pathways mediated by different combinations of the five Tn7-encoded transposition proteins. In one transposition pathway, Tn7 inserts into a unique site in the bacterial chromosome, attTn7, through specific recognition of sequences in attTn7; the other transposition pathway ignores the attTn7 target. Here we examine targets of the non-attTn7 pathway and find that Tn7 preferentially inserts into bacterial plasmids that can conjugate between cells. Furthermore, Tn7 appears to recognize preferred targets through the conjugation process, as we show that Tn7 inserts poorly into plasmids containing mutations that block plasmid transfer. We propose that Tn7 recognizes preferred targets through features of the conjugation process, a distinctive target specificity that offers Tn7 the ability to spread efficiently through bacterial populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposon Tn7 directs transposition into the genome of filamentous bacteriophage M13 using the element-encoded TnsE protein.

The bacterial transposon Tn7 has a pathway of transposition that preferentially targets conjugal plasmids. We propose that this same transposition pathway recognizes a structure or complex found during filamentous bacteriophage replication, likely by targeting negative-strand synthesis. The ability to insert into both plasmid and bacteriophage DNAs that are capable of cell-to-cell transfer woul...

متن کامل

Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition.

The bacterial transposon Tn7 exhibits target immunity, a process that prevents Tn7 from transposing into target DNAs that already contain a copy of the transposon. This work investigates the mechanism of target immunity in vitro. We demonstrate that two Tn7-encoded proteins_TnsB, which binds specifically to the ends of Tn7, and TnsC, the ATP-dependent DNA binding protein_act as a molecular swit...

متن کامل

The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD.

The excision of transposon Tn7 from a donor site and its insertion into its preferred target site, attachment site attTn7, is mediated by four Tn7-encoded transposition proteins: TnsA, TnsB, TnsC, and TnsD. Transposition requires the assembly of a nucleoprotein complex containing all four Tns proteins and the DNA substrates, the donor site containing Tn7, and the preferred target site attTn7. T...

متن کامل

Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7.

The bacterial transposon Tn7 encodes five genes whose protein products are used in different combinations to direct transposition to different types of target sites. TnsABC + D directs transposition to a specific site in the Escherichia coli chromosome called attTn7, whereas TnsABC + E directs transposition to non-attTn7 sites. These transposition reactions can also recognize and avoid "immune"...

متن کامل

P-71: Construction of Required DNA Plasmids for Validation of Predicted MicroR-NA Targets

Background: The micro-ribonucleic acids (miRNAs) are noncoding RNA molecules that are conserved developmentally and include usually 18-25 nucleotides. MiRNA regulates gene expression through mRNA degradation or inhibiting of its translation. These biomolecules contribute in cellular physiologic and pathologic processes and most of them may act as oncogenes or tumor inhibitors. Identification of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 10 17  شماره 

صفحات  -

تاریخ انتشار 1996